SG2650 board

Ivan Z. aka ’Giles’
gilesgoat@gilesgoat.com

March 22, 2014

Contents
1 Introduction

2 Constructional details of board
2.1 Thepowersupply
22 TheCPU s
22.1 TheCPUclock
222 TheCPUreset,
2.2.3 The CPU addressingspaceo v ..
224 TheCPUL/O
2.2.5 The CPU SENSE and FLAGlines
23 TheUART
2.3.1 UARTregisters oo i v i e
232 Thebaudrateclock
2.3.3 Theuartinterfacing
234 Theuvart TXandRXlines
24 ThelDEinterface
24,1 ThelDEconnector
25 TheCPLDmapregister oo
2.6 Themainedgeconnector
2.7 JTAGCONNECLOr o v v i i i e e e e e e e e
2.8 The DB9RS232connector

3 Jumpers settings
4 Schematics

5 The PCB and components list
5.1 Thecomponentslist.

6 CPLD VHDL source
6.1 The UCF file for the CPLD pins assignement

(]

—_
NNV OO ITIUnUnnnd BB DR WWW

—_—

[
[\®]

14

20
20

24

7 Card monitor/bootloader program
7.1 Monitor command "H’,Help
7.2 Monitor command D’ <aaaa>, Dumpmemory
7.3 Monitor command ’A’ <aaaa>, Alter memory contents
7.4 Monitor command 'L <aaaa>, Load data at address (via XMODEM)
7.5 Monitorused memory
7.6 Monitor listing

8 Card pictures

9 Disclaimer and License

30
30
30
31
31
31
31

46

49

Abstract

Long time ago a friend of a friend of mine gave me a bag full of really old
chips, some of them were some curious interesting CPUs. Years later an idea to
preseve the memory and knowledge of those unusal CPUs came in mind and so I
did start a mission to create small but still useful boards with those CPUs. This is
one of those boards, a simple one based around the Signetics 2650.

1 Introduction

The SG2650 board is a single board computer based around the SG2650 CPU.
The board is a standard 160x100 Eurocard board with an DIN41926 64 pin con-
nectors designed to fit in a standard 19 inches 3U rack.

2 Constructional details of board

The board is a standalone computer with a CPU, RAM, ROM,an UART for RS232
communication, and IDE port and a DIN41926 connector for interfacing with other
components.

The UART provides 1 serial channel which is then connected to a levels translator
to provide correct RS232 level, two special CPU pins named SENSE and FLAG are
also connected to the levels translator and provide an additional software driven serial
communication port.

One DBY male connector is present on the main bezel the two serial port as well as
a reset pushbutton switch.

A standard 40 pins IDE (PATA) connector is also present on the board for connec-
tion with some sort of hard drive unit.

The main logic functions are provided via a single CPLD chip to reduce compo-
nents count.

The board also contains two CAN clock oscillators, one to provide the main 1
Mhz system clock on the board and one to provide an 1.8432 Mhz used for baud rate
generation.

2.1 The power supply

The board requires a single power supply at 5V (VCC) board consumption been not
measured but it’s supposed to be around various hundreds of miliampers. The required
tensions for the RS232 interface are derived internally from the 5V via charge pump
methods by the MAX232 chip.

2.2 The CPU

The CPU is a Signetics 2650 clocked at 1 Mhz.

As the board is very minimal and the component load is small no buffering is
present, if other cards have to be connected to it the added card must contain its own
buffers for the required lines.

2.2.1 The CPU clock

The CPU clock is generated by the CPLD via a divisor, the main oscillator clock is
divided as necessary to generate 1 Mhz.

The frequency of 1 Mhz been chosen because this is also the maximum frequency
the UART can cope with.

The clock is a standard TTL level clock with a duty cycle of 50 percent, this duty
cycle is guaranteed by a flip flop acting as a divide by two clock shaper.

NOTE : in this particular implementation a 16 Mhz CAN oscillator is first divided
by 8 and then further by 2 by the clock shaper to get a perfect 50 percent duty cycle 1
Mhz clock.

2.2.2 The CPU reset

The CPU reset is generated by the CPLD as well and is triggered by power up or the
panel reset button.

At power up until capacitor C10 is charged via R3 a low level is forced on the
MReset pin, the CPU reset pin is hold low as long as this condition persists.

When MReset returns high the CPU reset pin is released and set to logic ‘1’ after
four CPU clock cycles.

When the pushbutton P1 is pressed this fully discharges the capacitor C10 restarting

the whole thing above once released.
1

2.2.3 The CPU addressing space

The CPU has a maximum addressing space of 32K which is split between ROM ad-
dressing space and RAM addressing space.

At power up or immediately after a reset the first 4K of addressing space are de-
signed as ROM and the remaining of the addressing space as RAM.

Table 1: CPU address space after power up or reset

Address range | Memory
0000H - OFFFH | ROM
1000H - 7FFFH | RAM

The RAM is implemented as a single chip 43256 32k x 8 bits, while the ROM can
be selected via jumper J2 to be a 6264 (8K x 8) or a 2732 (4K x 8) chip.

The first 4K of the addressing space can be dedicated to RAM by writing into the
CPLD “map register”.

The ROM is designed to contain the bootstrap program.

2.24 The CPUI/O

The I/O employed used Extended mode only of the CPU which means an I/O address
too has to be supplied.

! As the RAM is STATIC and the bootloader does NOT touch the ram contents except its own data area a
reset via pushbutton should not alter RAM contents in any way, this is very useful for debugging.

The I/O address space is only partially decoded, lines ADR4 and ADR3 are used
to identify four different I/O areas while lines ADRO - ADR2 are used by the IDE
interface to address the IDE registers during an IDE cycle.

The space is partitioned as by the following table :

Table 2: I/O space partitioning

ADR4 - ADR3 Meaning
00 CPLD memory map register
01 UART
10 IDE Low byte (DO .. D7)
11 IDE High byte (D8 ... D15)

2.2.5 The CPU SENSE and FLAG lines

The SENSE and FLAG lines are connected to the RS232 level translators, this allows
them to be used as a software programmed serial communication port. The lines after
the RS232 translators are routed to connector CON4

Table 3: CON4 pinout

Pin | Signal Direction
1 Flag | Output (RS232 level)
2 Sense | Input (RS232 level)
3 GND Ground

2.3 The UART

The UART is a 6850 ACIA clocked at 1 Mhz. Its transmit and receive clock are tied
together and are supplied a 16 x Baudrate clock from the CPLD. Only the line TX and
RX are connected to the RS232 level translators, CTS and RTS lines are not used.
The RS (register select) pin is connected to ADRO.
The UART is selected via Extended I/O operations any time ADR4-ADR3 are as
“01”.

2.3.1 UART registers
The UART has 4 registers mapped as follow

Table 4: UART registers mapping

ADR2 | I/O Operation Meaning
0 Write Control register
0 Read Status register
1 Write Transmit register
1 Read Receive register

For convenience here a quick look at the Control and Status register.

Table 5: UART Control register

o4

Meaning

NN RN = O

Counter Divide Select 1, (CRO)
Counter Divide Select 2, (CR1)

Receive Interrupt Enable (CR7)

Word Select 1, (CR2)

Word Select 2, (CR3)

Word Select 3, (CR4)
Transmit Control 1, (CRS5)
Transmit Control 2, (CR6)

Table 6: UART Statusl register

Bit

Meaning

NN kWD = O

Receive Data Register Full, (RDRF)
Transmit Data Register Empty, (TDRE)

Data Carrier Detect, (DCD)
Clear To Send, (CTS)
Framing Error, (FE)
Receiver Overrun, (OVRN)
Parity Error, (PE)
Interrupt Request (IRQ)

2.3.2 The baud rate clock

The UART requires a baudrate clock which must be 16 times the desired baud rate, this
clock is generated by a divisor internal to the CPLD starting from a 1.8432 Mhz clock.

The 1.8432 Mhz clock is generated by a CAN oscillator.

The supplied UART clock is set to 16 times 9600 so is at 153600 Hz via an internal

12 divisor counter present inside the CPLD.

2.3.3 The uart interfacing

A closer look at the 6850 timings shows that it’s possible to connect it directly to the
SG2650 by simply supplying it with a inverted (NOT) clock, in such a way it turns
out its bus timings are going to coincide with the SG timings provided that CPU clock
and UART clock are the same frequency.

2.3.4 The uart TX and RX lines

After the TTL to RS232 translator the transmit and receive lines are routed to connector
CON2 with the following pinout :

Table 7: CON2 pinout

Pin | Signal Direction
1 Flag | Output (RS232 level)
2 Sense | Input (RS232 level)
3 GND Ground

2.4 The IDE interface

An IDE interface is present on board, this allows IDE (PATA) devices to be connected
to it.

The IDE interface is designed to support PIO mode only I/O (no support for DMA
) and is fundamentally a reworked P.R.I.D.E interface.

The CPLD posses two registers called “IDE Low Byte” and “IDE High Byte”, the
access modalities are the usual ones.

In the case of a WRITE operation first the IDE High Byte register has to be written
followed by a write on the IDE Low Byte register with ADRO .. ADR2 containing the
value of the IDE register you wish to use.

Table 8: IDE Write Cycle

Action Effect
1. Extend I/O write on HI register Data HI is latched
16 bits data HI+LOW ready
2. Extend I/O write on LOW register | ADRO..2 selects IDE register
IDE write cycle starts

In the case of a READ operation first the IDE Low Byte register has to be read with
ADRO .. ADR2 containing the value of the IDE register you intend to read followed
by a read of the IDE High Byte register.

Table 9: IDE Read Cycle

Action Effect
ADRO..2 selects IDE register
IDE read cycle starts
Data HI is latched
Data LOW is read
2. Extend I/O read on HI register Data HI is read

1. Extend I/O read on LOW register

ONLY when the IDE Low Byte register is being used a IDE_WR or IDE_RD signal
together with an IDE_CSO is generated, when IDE High Byte register is being used all
those signals are kept inactive.

In this implementation IDE_CS1 is hardwired to logic level ‘1’ .

2.4.1 The IDE connector

A standard 40 pin IDE connector header is present on the board, this connector follows
the standard IDE pinout as shown below :

Table 10: IDE 40 pins connector assignement

Pin Name Pin Name
1 Reset 2 GND
3 D7 4 D8
5 D6 6 D9
7 D5 8 D10
9 D4 10 D11
11 D3 12 D12
13 D2 14 D13
15 D1 16 D14
17 DO 18 D15

19| GND | 20 key
21 | DMARQ | 22 | GND
23 | /DIOW | 24 | GND
25 | /DIOR | 26 | GND
27 | IORDY | 28 | CSEL
29 | /DMACK | 30 | GND
31 | INTRQ | 32 | /1OCS16
33 | DAl 34 | PDIAG
35| DAO | 36 | DA2
37 | /IDE.CSO | 38 | /IDE.CS1
39 | /ACTIVE | 40 | GND

A standard 40 pins IDC cable is supposed to be used to connect it to a hard drive
or other storage unit.

2.5 The CPLD map register

This is simply a write only 1 bit register that can be accessed by an Extended I/O
operation when ADR4-ADR3 are as “00” .

As there is no data bit connected to it instead an address line ADR?2 is used for that
so the value of ADR?2 is used to assign the value to this register bit.

When the register bit is set to ‘1’ then the ROM totally disappears (deselected)
from the address space, making the full 32K of available address space become RAM.

When the register bit is set to ‘0’ the first 8K of addressing space become ROM and
the remaining 24K are RAM.

At power up or after a reset the register bit is set to ‘0’ .

Table 11: Map register write access

ADR4-ADR3 | ADR2 Meaning
“00” “0” 0000H - OFFFH is ROM
“00” “1” 0000H - OFFFH is RAM

We remind that 1000H - 7FFFH are always RAM.

2.6 The main edge connector

The main edge connector is the standard DIN 41612, see the table for the pins assigne-
ments.

Table 12: Main edge connector

Pin | Row A Row C
1 adr6 adr5
2 adr4 adr7
3 n.c. adrll
4 n.c adr10
5 n.c. adr9
6 VCC VCC
7 adrl4 adrl3
8 n.c. CpuCLK
9 n.c. adr12
10 n.c. adr3
11 n.c. adr8
12 n.c. n.c.
13 n.c. do
14 n.c. d1l
15 n.c. d2
16 n.c. d3
17 n.c. d4
18 n.c. ds.
19 n.c. do6
20 n.c. d7
21 n.c. adr0
22 n.c. n.c.
23 n.c. opreq
24 n.c. negR-W.
25 n.c. WRP
26 n.c. MneglO
27 n.c. n.c.
28 n.c adrl
29 n.c. MRESET
30 n.c. BaudCLK
31 adr2 baudclk16
32 GND GND

10

Table 13: Signals meaning

Signal name Type Meaning
adrl4 ...adr0 Output Address lines
d7...d0 Input/Output Data lines
opreq Output Operation Request
negR-W Output Read (0) or Write (1)
WRP Output Write Pulse
MNeglO Output Memory (1) orIO (0)
CpuCLK Output CPU Clock 1Mhz
MRESET Output Master Reset (active 0)
BaudCLK Output Baudrate Clock
baudclk16 Output 16 X Baudrate Clock
vVCC Input +5v Power Supply
GND Input Power Supply Ground (0 V)

“n.c.” means a not connected pin.
For more details about the signals please consult the SG2650 CPU User Manual.

11

2.7 JTAG connector

A 10 pins IDC type connector is present containing JTAG signals for programming of
the CPLD. The connector is designed to fit the XILINX Parallel 3 Upload Cable.

Pin number 1 of the connector can be connected to the board VCC via jumper J1,
normally this pin is NOT connected.

Table 14: JTAG connector pins assignements

Pin | Signal | Pin | Signal
1 VCC 2 GND
3 TCK 4 TDO
5 TDI 6 ™S
7 n.c 8 n.c.
9 n.c. 10 n.c.

“n.c.” means a not connected pin.

2.8 The DB9 RS232 connector

On the front panel a male DB9 connector is present for the RS232 port, this is for
connection to a computer or terminal to access the board monitor program. The pinout
of the connector is as following :

Table 15: Front panel DB9 serial connector

Pin | function | direction

1 not used n.a.

2 RXD input

3 TXD output
4 | not used n.a.

5 GND ground
6 | not used n.a.

7 | not used n.a.

8 | notused n.a.

9 | not used n.a.

3 Jumpers settings

Two jumpers are present in the card, they are called J1 and J2.

Jumper J1 when in ON (inserted) position connects the VCC of the board to the
VCC line (pin 1) of the JTAG connector, this allows to supply power to the upload
cable from the board or to the board from the cable.

Jumper J2 when in ON (inserted) position supplies VCC to the pin 26 of the ROM
socket, this is designed for a 2732 4Kx8 EPROM.

12

Table 16: Main Board jumpers J1 and J2

On : jumper inserted, Off : no jumper

Jumper | Position Meaning
n On Vcce to JTAG Pin 1
n Off JTAG Pin 1 disconnected
12 On Vce to ROM pin 26 (2732 used)
12 Off ROM pin 26 disconnected

Jumpers are normally both in OFF position (not inserted).
Check the pictures for jumper locations and position.

13

4 Schematics

‘We have here the fulll board schematics, there are various sheets such as :
e Project Root sheet
e CPU, RAM, ROM and CPLD
e UART and serial port
e IDE interface
e Main connector

The choice of components been around the idea to keep the number of chips low
and what I already had around and simplicity of constructing such a board with home
technology.

Of course different choices and even better optimisations could be done. The choice
of the particular format and connector also been dictated by the will of making it fit
inside a standard 19 inches rack therefore the 160 x 100 mm 3U Eurocard standard
format been chosen.

All been manually constructed, PCB been designed, developed, etched and drilled
manually as well as the construction and design of the front panel. At the time this
board been built the Xilinx CPLD XC8536 was still available, for a new project you
should replace it with the 3.3V version and add a voltage regulator for its power supply.

14

TET 0OE E0d

LOTRHAT

seEmyp

Figure 1: Project root

k) e
P
-

b gz
k= b daaa

THIT T

ITaPeE

LEsEIsAs

sty (|

15

‘HA8 NI
naasT

Figure 2: The CPU with RAM, ROM, CPLD and reset

T
Eir
a
wopsg sy g
.
v
£asowya
@ |
a0t
b =
- fory 1
@0
= E:
08V
o 6

s :

@

L

T T
ow sng— % oo =]

ST

e
aw an
v T
B o e I = =
ota [&
= e 238 o 059E0%
u a
aa
tese my e sty P i
— [Ty o
3 o il e
== b v wom
" B | Eve e
] T N
asvaserom ssteraan ps i3
49 g Zr—| b
mog [T sy
= v
= 2 ED sa 3 TEnvE VTSI
by = e T 1 = Warsay
o i A . =
a iy B O O | zoias
o
Eiikoy R
oA
o . a w @ ssnga
BraT sa o Z s ssnaa
i a1 ‘a & ‘a fsnaa
T ra w a venaa
T AT @ o @ o0
s w o w tsnaa
s e a I @ tnga g
558 oa o ox onaa &
m 25 T o
T @ I E w
i bepdalstal 010 @
= EFSEY
oa
T 0w
T

=

16

Figure 3: The UART and the RS232 port

o ‘ @ ‘ <

‘Rwum

canosca

it s i
PR 5z .
g @ | g “
8 @ £ E
8 I
] L

Puaiie |

% quE”—““
B | 2 I - -
m] Ji

6a50

17

Figure 4: The IDE interface and connector

8 \ > \ B \
£
L
"SE“
4
|
il —1
e
| i -
4 o i
LREEEEEERERE R PEER CRE E EREEEE -
EREEEE ER ERENRRERRRCREEEEE
Iit
1l
5 |
g
Bl :
E
E

HCT

"

a0
a
a2
a5
a
s
a5
a7

BETSS

il

{1

il

il

il

il

il

o
TeECaT

C

D

D

D

D

D

D

D

D

i

TF 0
DE cLE

18

Figure 5: The main DIN 4192 connector

g
o g JEE) bR ——
EEEE EF‘E%E 44 dald+3 é‘#ﬁ q 1

19

‘Rwum
[Tram By
6

S of

D OETME-T, \EONISCH

FLTN]

‘)l\mb:(

ET)
s
File

S The PCB and components list

Please note those images are just for reference roundoff errors in the printing and con-
version process make them look lightly wrong in places (tracks touching each other
and some misalignments NOT present in the real print).

Warning the PCB shown contains a few little errors and some manual corrections
via wire been done after, also the IDE interface never been tested yet.

5.1 The components list

Part Used PartType Designators
1 2 1K R1 R2
2 1 1N4148 D1
3 1 1uF C10
4 1 4K7 R4
5 1 22K R3
6 1 40PIN CON1
7 1 74HC245 U4
8 2 T4HC574 Ul U2
9 16 100nF Cl C2 C3 C4 C5 C6 C7 C8 C9 C11 C12
Cl3 Cl4 C15 Cl6 C17
10 1 2764 U5
11 1 6850 U9
12 2 CANOSC2 0SC1l 0OscCz2
13 2 CON3 CON2 CON4
14 1 DIN-64 CON5
15 1 JTAGCONN CON3
16 2 JUMPER Jl Jz2
17 1 MAX232 U3
18 1 5G2650 Us
19 1 SW-PB Pl
20 1 UPD43256 u7
21 1 XC9536 U6

20

L
JE0HYD
Z350
FEOHE]
C 1250

+F

)
EE[?_

E]R_
-

Figure 8: Silkscreen
Adsam L

440071 HNIdO+
— M i S S R = e
0001 domr 5E i e
Ll BT R -
— oo T]
g v i HMODJSHLL
00T
B Ll

FiHE@En ()
xuﬁm o Ee

Oy

nGge || [|
m_.._ Cé 3 .T_.nmn_I*.w_”
com+ 100nF

MW cams -+ _F :m_*aw__... ...__M.u_._“_ .
= BEeToE =5 H

Da

Ef _ mxﬁ

[L3 i SN a_uﬂ
E_m__._nm.mmmvn_mm,_ w - TO0rE #8922 o5 e
T +—F OonF

23

E

TTUEEZ S

6 CPLD VHDL source

Here follows the complete listing of the VHDL source that makes up the CPLD.

—— Company:

-— Engineer:

-— Create Date: 17:20:09 03/03/2012

—— Design Name:

—— Module Name: SG2650_Logic — Behavioral

-— Project Name:
—— Target Devices:
-— Tool versions:
—-— Description:

—— Dependencies:

-— Revision:
—-— Revision 0.01 - File Created
-— Additional Comments:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_MISC.ALL;

entity ClockDivider is
generic (widthBits : integer := 2);--default value is 2
Port (clkin : in STD_LOGIC;
div : in STD_LOGIC_VECTOR (widthBits downto 0);
clkout : out STD_LOGIC;
negreset : in STD_LOGIC);
end ClockDivider;

architecture Behavioral of ClockDivider is

signal zeroCount : STD_LOGIC;

signal counter : STD_LOGIC_VECTOR (widthBits downto 0);
signal tmpclk : STD_LOGIC;

signal tmpZero : STD_LOGIC;

begin

—— the first step is a divide by div counter
DIVIDER: process (clkin, negreset)
begin
if (negreset = ’0’) then
counter <= (others => ’0’);
elsif (clkin’event and clkin=’1’) then

if (zeroCount = '0’) then
counter <= div;
else
counter <= counter-1;
end if;
end if;

end process;

zeroCount <= OR_REDUCE (counter);
tmpZero <= zeroCount;

24

—— the second step is a divide by 2 to get a 50% duty cycle
SHAPER: process (tmpZero, negreset)
begin
if (negreset = ’'0’) then
tmpclk <= '0’;
elsif (tmpZero’event and tmpZero='1l’) then
tmpclk <= not tmpclk;
end if;
end process;

-— 50% duty cycle
clkout <= tmpclk;

end Behavioral;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_MISC.ALL;

—-——— Uncomment the following library declaration if instantiating
———- any Xilinx primitives in this code.

-—library UNISIM;

——use UNISIM.VComponents.all;

entity SG2650_Logic is
Port (
—-— IDE Interface control signals
IDE_RD : out STD_LOGIC;
IDE_WR : out STD_LOGIC;
IDE_CSO : out STD_LOGIC;
IDE_CLKl : out STD_LOGIC;
IDE_OEl : out STD_LOGIC;
IDE_OE2 : out STD_LOGIC;
IDE_OE3 : out STD_LOGIC;
IDE_CLK2 : out STD_LOGIC;
IDE_BDIR : out STD_LOGIC;
—— Main oscillator Clock, divided to get the required CPU clock
MAINCLK : in STD_LOGIC;
ADR12 : in STD_LOGIC;
ADR13 : in STD_LOGIC;
ADR14 : in STD_LOGIC;
ADR2 : in STD_LOGIC;
ADR3 : in STD_LOGIC;
ADR4 : in STD_LOGIC;
—— UART 6850 chip sel, R/W and E lines
UARTSEL : out STD_LOGIC;
UARTRW : out STD_LOGIC;
UARTE : out STD_LOGIC;
—— Baudrate 1.8432 Mhz clock in
BAUDCLK : in STD_LOGIC;
—— Baud * 16 clock out
BAUDCLK16 : out STD_LOGIC;
—— Ram/Rom control signals OE and WE
ROMOE : out STD_LOGIC;
RAMOE : out STD_LOGIC;
RAMWE : out STD_LOGIC;
—-— Cpu control signals
MNEGIO : in STD_LOGIC;
WRP : in STD_LOGIC;

25

NEGR_W : in STD_LOGIC;
NOTINTREQ : out STD_LOGIC;
INTACK : in STD_LOGIC;
OPREQ : in STD_LOGIC;
—-— Master Reset, coming from the pushbutton
MRESET : in STD_LOGIC;
CPUCLK : out STD_LOGIC;
—— Cpu reset
CPURESET : out STD_LOGIC);
end SG2650_Logic;

architecture Behavioral of SG2650_Logic is

alias EnegNE is ADR13;
alias DnegC is ADR14;

signal theClock : STD_LOGIC;

—-— when 70’ we are in the first 8K of a MEMORY access
signal first4KMem : STD_LOGIC;

-— when "1’ we are executing a ’'write to data’ instruction WRID
signal writeToData : STD_LOGIC;

-— a bit to say if the first 8K are ROM 0’ or RAM ’1’
signal first4KBit : STD_LOGIC;

—— this is ’0’ when there’s a Mem access to RAM
signal isTheRam : STD_LOGIC;

—— this is an important signal, basically is OPREQ AND CPUCLOCK,
-— 1is guaranteed to be a good strobe to latch data/stuff for I/O
signal theStrobe : STD_LOGIC;

—-— a duplication as we need it to combine for ramoe
signal theRomOE : STD_LOGIC;

—— delayed OPREQ
signal delayedOpreq : STD_LOGIC;

signal UartCS : STD_LOGIC;
signal UartIsSelected : STD_LOGIC;

signal IdeHISelected : STD_LOGIC;
signal IdeLowSelected : STD_LOGIC;

—-— this is to generate the ide read/write signal
signal IdeStrobe : STD_LOGIC;

signal theIdeRD : STD_LOGIC;

signal theResetCounter : STD_LOGIC_VECTOR (2 downto 0);
signal ResCntNotZero : STD_LOGIC;

-— (7+1) x 2 = 16

signal theCpuClkDiv : STD_LOGIC_VECTOR (2 downto 0) := "111";
—— (5+1) x 2 = 12 so 1.8432 Mhz / 12 = 153.600 Khz 9600 x 16
signal theBaudClkDiv : STD_LOGIC_VECTOR (2 downto 0) := "101";
component ClockDivider

generic (widthBits : integer := 2);--default value is 2

26

Port (clkin : in STD_LOGIC;
div : in STD_LOGIC_VECTOR (widthBits downto 0);
clkout : out STD_LOGIC;
negreset : in STD_LOGIC);
end component;
begin
-— the CPU clock we assume is MAINCLK divided by 4 (to get 1 Mhz)

CpuClkDivide : ClockDivider generic map (widthBits => 2) port map (MAINCLK,
theCpuClkDiv, theClock, MRESET);

CPUCLK <= theClock;

-— let’s make a CPU reset that is guaranteed to stay for some clock cycles

ResCntNotZero <= OR_REDUCE (theResetCounter); —-- or of all its bits
CPURESET <= ResCntNotZero; -- ’1’ as long as it’s not 0
NOTINTREQ <= ’1’; —-- for now no interrupts

RESCPU: process (MRESET, theClock)

begin
if (MRESET = ’'0’) then
theResetCounter <= "101"; -- 5-1 = 4 clock cycles

elsif (theClock’event and theClock = ’1’) then

if (ResCntNotZero = ’'1’) then

theResetCounter <= theResetCounter-1;

end if;
end if;

end process;

—-— as explained before, this guarantes a valid ’strobe’ when
—— all data and control lines are definitely valid

—-— the fact is OPREQ goes high BEFORE the clock can do so this
—-— gives us a bit of time for settling of the signals.
theStrobe <= theClock and OPREQ;

—-— remember NOTHING is valid until OPREQ = ’1’
first4KMem <= 0’ when MNEGIO = "1’ and ADR14 = 0’ and ADR13 = ’'0’ and ADR12 = ’'0’
and OPREQ = '1’ else ’'1’;

—— ADRI13 is ALSO EnegNE ("1’ = extended, 70’ = NOT extended)
—— ADR4,ADR3 = "00" = map latch
writeToData <= ’'1’ when MNEGIO = '0’ AND theStrobe = ’1’ and EnegNE ='1’
and ADR3 = 0’ and ADR4 = '0’ else ’'0’;

—— fundamentally latch ADR2 on the rasing edge of that

—— this ’shit’ because we do not have any data line available
—— to latch so we latch ADR2 instead

THEfirst4KBIT : process (MRESET, writeToData)

begin
if (MRESET = 0’) then
first4KBit <= "0’; —-- at reset it must be rom
elsif (writeToData’event and writeToData = "1’) then
first4KBit <= ADR2;
end if;

end process;

-— now as simple as possible the rom/ram OE/WE signals

27

ROMOE <= theRomOE;
—-— this combination already includes MNEGIO and OPREQ

theRomOE <= 0’ when first4Kbit = "0’ and first4KMem = "0’ and OPREQ = '1’ else ’"1’;
—— fundamentally MNEGIO ’1’ and OPREQ ’1’ == memory access of any kind
isTheRam <= "0’ when theRomOE = 1’ and MNEGIO = ’1’ and OPREQ = 1’ else ’'1’;

—— that’s RAMOE
RAMOE <= isTheRam or NEGR_W;

—— and that’s RAMWE
RAMWE <= isTheRam or (not (NEGR_W));

-— now let’s sort out the 6580
—— we assume the CPU and the Uart both go the same 1Mhz clock

—— NOTE : this is the NOT of the CPU clock (must be 1Mhz)
UARTE <= not (theClock);

DELAYOPREQ: process (theClock)
begin
if (theClock’event and theClock=’1’) then
delayedOpreq <= OPREQ;
end if;
end process;

—— it works using a EXTENDED I/O instruction, ADR4,ADR3 = "01"
UartIsSelected <= 0’ when EnegNE = ’1’ and MNEGIO = ’0’ and ADR3 = "1’
and ADR4 = 0’ else '1’;
UartCS <= not ((delayedOpreqg and OPREQ)) or UartIsSelected;
UARTRW <= not (NEGR_W); -- neg because on the 6850 is RnegW i.e. 0’ = write, "1’ = read
UARTSEL <= UartCS;

BaudClkDivide : ClockDivider generic map (widthBits => 2) port map (BAUDCLK, theBaudClkDiv,
BAUDCLK16, MRESET);

-— tricky part, time to check about those IDE signals

—-— so we have ADR4,ADR3 = "10" IDE_ L and ADR4,ADR3 = "11" IDE_H

IdeLowSelected <= 0’ when EnegNE = ’1’ and MNEGIO = ’0’ and ADR3 = ’'0’
and ADR4 = '1’ else '1’;

IdeHiSelected <= ’'0’ when EnegNE = ’1’ and MNEGIO = ’'0’ and ADR3 = "1’
and ADR4 = '1’ else '1’;

THEIDESTB : process (MRESET, theClock)
begin
if (MRESET = 0’) then
IdeStrobe <= '17;
elsif (theClock’event and theClock = ’"1’) then
if (OPREQ = ’1’) then
IdeStrobe <= not (IdeStrobe);
end if;
end if;
end process;

theIdeRD <= IdeStrobe or NEGR_W or IdeLowSelected;
IDE_RD <= theIdeRD;

IDE_WR <= IdeStrobe or not (NEGR_W) or IdeLowSelected;
IDE_CS0O <= not (OPREQ) or IdeLowSelected;

IDE_OE3 <= IdeLowSelected or not (OPREQ);

28

IDE_BDIR <= NEGR_W; -- 0 = read = A <- B, 1 = write A —> B

—-— high ’read’ latch, when I read HI
IDE_OEl <= IdeHiSelected or NEGR_W or not (OPREQ);

—— high ’write’ latch OUTPUT, when I write on LOW (which does the IDE_CS cycle)
IDE_OE2 <= IdeLowSelected or not (OPREQ) or not (NEGR_W);

-— high ’write’ latch STORE OUTPUT, when I write on high
IDE_CLK2 <= not (IdeStrobe) or IdeHiSelected or not (NEGR_W);

—— when you read ’‘low’ it also latches ’high”’
IDE_CLK1 <= theldeRD; -- remember it latches on the RAISING EDGE

end Behavioral;

6.1 The UCEF file for the CPLD pins assignement

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments

NET "ADR12" LOC = "pP6"

NET "ADR13" LOC = "P28" ;
NET "ADR14" LOC = "P29" ;
NET "ADR2" LOC = "P7"

NET "ADR3" LOC = "P40" ;

NET "ADR4" ©LOC = "p42" ;

NET "BAUDCLK" LOC = "pP27" ;
NET "BAUDCLK16" LOC = "PpP24" ;
NET "CPUCLK" LOC = "P43" ;
NET "CPURESET" LOC = "P44" ;
NET "IDE_BDIR" LOC = "P13" ;
NET "IDE_CLK1" LOC = "p4" ;
NET "IDE_CLK2" LOC = "P9" ;
NET "IDE_CSO" LOC = "pP3" ;
NET "IDE_OELl" LOC = "p8" ;
NET "IDE_OE2" LOC = "P11" ;
NET "IDE_OE3" LOC = "pl2" ;
NET "IDE_RD" LOC = "P1" ;
NET "IDE_WR" LOC = "P2" ;
NET "INTACK" LOC = "P37" ;
NET "MAINCLK" LOC = "P5" ;
NET "MNEGIO" LOC = "P33" ;
NET "MRESET" LOC = "P39" ;
NET "NEGR_W" LOC = "P35" ;
NET "NOTINTREQ" LOC = "P36" ;
NET "OPREQ" LOC = "P38" ;
NET "RAMOE" LOC = "P19" ;
NET "RAMWE" LOC = "p22" ;
NET "ROMOE" LOC = "P20" ;
NET "UARTE" LOC = "P26" ;
NET "UARTRW" LOC = "p1l8" ;
NET "UARTSEL" LOC = "P14" ;
NET "WRP" LOC = "P34" ;

#PACE: Start of PACE Area Constraints
#PACE: Start of PACE Prohibit Constraints

#PACE: End of Constraints generated by PACE

29

7 Card monitor/bootloader program

The card monitor/booloader program is resident in a 4K Eprom, it allows initilisation
of memory and UART and contains a mini monitor program that allows to :

e Display contents of memory

e Modify memory contents

e [oad a program into memory via XMODEM
e Execute code

The monitor is accessed by connecting a computer terminal via serial port set at 9600
Baud, 8 bits, no parity . At power up a welcome message is displayed such as :

Signetics 2650 CPU Board @1Mhz
(C) 2012 Ivan Z. Llamasoft
BootLoader Version 5.02

>

Any time the prompt ‘>’ is displayed the monitor is ready to accept commands. Com-
mands are a single letter eventually followed by two or four hexadecimal digits.

7.1 Monitor command "H’, Help

The monitor command "H’ displays a help text showing the list of available commans.

>h
H shows help, D <aaaa> dumps memory
A <aaaa> alters memory (’'.’ to exit)

L <aaaa> XMODEM loads data, “X CAN
J <aaaa> jumps to address

<aaaa> hexadecimal 16 bits address
>

7.2 Monitor command D’ <aaaa>, Dump memory

The monitor command D’ displays an hexadecimal and ASCII dump of a 256 bytes
memory block starting from address ‘aaaa’ (address can be from 0000H to 7FFOOH)
, the non printable ASCII characters are replaced by dots.

>d 0000

0000 20 93 CO CO CO CO CO CO 05 13 D5 08 CO CO CO CO v.viiiiinnnnn
0010 CO CO D5 08 CO CO CO CO 05 11 D5 08 CO CO 04 04

0020 CC 10 00 04 C1 CC 10 01 3F 02 5F 04 3E 3F 02 8F ?._.>7..
0030 3F 01 FB 04 05 CC 10 00 04 16 CC 10 01 3F 02 5F e ?._
0040 05 00 3F 01 FO 60 18 63 85 01 CD 10 03 E4 61 1A P a.
0050 02 A4 20 E4 48 98 10 04 05 CcC 10 00 04 19 cC 10 P
0060 01 3F 02 5F 1F 00 2B E4 44 9C 01 2B OD 10 03 3F 2. .+.Doa+LL L
0070 01 FO 60 1C 00 2B 3F 02 Al CC 10 05 CcC 10 OE 3F P ?
0080 02 Al CC 10 06 CC 10 OF 05 10 CD 10 07 05 10 CD +.iiiiinnnnnnnnn
0090 10 08 OC 10 05 3F 02 D4 0C 10 06 3F 02 D4 04 20 I ...

00AO0 3F 02 8F 3F 02 8F 0C 90 05 3F 02 D4 04 20 3F 02 I SR ?... 2.
00BO 8F 04 01 05 01 8D 10 06 18 02 04 00 CD 10 06 8C ...
00CO 10 05 CC 10 05 OC 10 08 A4 01 CC 10 08 98 57 04 W.
00D0O 20 3F 02 8F 3F 02 8F 05 10 CD 10 08 0C 90 OE E4 T S
00EO 20 1A 26 E4 7F 19 22 3F 02 8F OC 10 OF 84 01 CC e

00F0O 10 OF 98 08 0C 10 OE 84 01 CC 10 OE 0C 10 08 A4
>

30

7.3 Monitor command A’ <aaaa>, Alter memory contents

The monitor command *A’ allows to modify memory contents starting from address
‘aaaa’ ((address can be from 0000H to 7FFFFH), it enters an interactive mode where
the address and the current content are shown, by entering a two digit hexadecimal
number you can modify the content. Entering a DOT character exits and returns to the
commands prompt terminating the modify session.

>a 2000

2000 00 2 1
2001 00 2 23
2002 00 2 55
2003 00 2

>

7.4 Monitor command 'L’ <aaaa>, Load data at address (via
XMODEM)

The monitor command 'L’ allows to load data into memory starting ad adress ‘aaaa’ (
address can be from 0000H to 7FFFFH) using the XMODEM protocol (simple CRC,
128 bytes packet size). This allows to load code or data into a memory address for
further execution. When the loading is finished the monitor returns to the command
prompt.

Transfer can be aborted in any moment by sending two consecutive CAN characters
(CTRL+X) as by XMODEM protocol.

>1 2000
Transfer aborted.
>

7.5 Monitor used memory

The monitor starts at address 0000H in ROM and uses some memory locations from
1000H to 1040H about to hold some variables and states. Please refer to the monitor
listing for more details.

7.6 Monitor listing

Here is a complete 2650 assembler listing of the bootloader/monitor program.

tabs 10,8 ;first tab is 10, then each tab is 8 ahead
width 132 ;jprevent folding of long lines
noproces ;disable fancy stuff, speed is what we want
title "Bootloader 1"
stitle "Written by Ivan 7. Llamasoft 2012"
name bootl_2650 ;the module name
org 0 ; ROM start address
1f equ 10 ; line feed
cr equ 13 ; carriage return
bksp equ 8 ; backspace
bell equ 7 ; the bell char

31

del

EQ
GT

LT
UN

;RO
;R1

;R3

UARTC
UARTS
UARTTX
UARTRX

CPLDROM
CPLDRAM

IDEHI
IDELOW

res_uart
uart_con

RDRF
TDRE

MsgHi
MsgLo
RO_save
R1_save
R2_save
MemHi
MemLo
Cntl
Cnt2

StrBuf

’

equ

127 ; delete char

;name the condition codes,

i (w

equ
equ
equ
equ
equ
equ
equ

e don’t remember numbers anyway)

; zero

w3 NT PN O

; always true

; name the registers

equ
equ
equ
equ

; so

equ
equ
equ
equ

equ
equ

equ
equ

£

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

w N - O

me values for I/0 space

08h ; UART control register (write)
08h ; UART status register (read)
0%h ; UART transmit register (write)
09h ; UART receive register (read)

0 ; write to this, first 8K = ROM
8 ; write to this, first 8K = RAM

20h ; IDE register High Byte
30h ; IDE register Low Byte

equ 13h ; no RX int, no TX int, 8 bits + 2 stop, Master Reset
equ 11h ; no RX int, no TX int, 8 bits + 2 stop, clock / 16

1 ; if ’1’ data is ready in the RX register

2 ; if ’1’ the TX register is empty

1000h

1001h ; stores the address in memory where the message is
1002h ; place to save RO

1003h ; place to save Rl

1004h ; place to save R2

1005h ; place to save a memory address for dump/load/etc.
1006h

1007h ; a couple of counters

1008h

1020h ; string buffer where readstring puts stuff in

; Definitions for the XMODEM loader

4

CHAR_STX
CHAR_SOH
CHAR_CAN
CHAR_ACK
CHAR_NAK
CHAR_EOT

equ 02H
equ 01H
equ 18H
equ 06H
equ 15H
equ 04H

; Variables for the Xmodem Loader

32

X_Phase equ
X_CanCnt equ
X_LastPk equ
X_AdrHi equ
X_AdrLo equ

X_CurAdrHi equ
X_CurAdrLo equ
X_Crc equ
X_ByteCntH equ
X_ByteCntL equ
X_TimeCntH equ
X_TimeCntL equ

X_CntTwo equ
X_CurPknum equ
X_OneK equ
PtrHi equ
Ptrlo equ
start eorz

lpsl

; Reset

nop

nop

nop

nop

nop

nop

lodi,R1

wrte,R1

nop

nop

nop

nop

nop

nop

wrte, R1

nop

nop

nop

nop

lodi,R1

wrte,R1

nop

nop

lodi, RO

stra, RO

lodi, RO

stra, RO

bsta, UN

1009h ; xmodem loader phase of the state machine

100ah ; counter of how many CHAR_CAN we received

100bh ; last packet received number

100ch

100dh ; hi/low address of the packet we are receiving
100eh ; current packet address in memory Hi

100fh ;""" "" and Lo

1010h ; current CRC in computation

1011h ; bytes counter Hi

1012h ; bytes counter Low (in reality up to 1024 + 3)
1013h ; timeout counter Hi

1014h ; timeout counter Lo

1015h ; a counter for the first 2 packet bytes (pkt num)
1016h ; current packet number, if == X_LastPk DO NOT update ptrs
1017h ; "1K_flag", if not zero we are using 1K packets
1018h

1019h

RO ; r0 =0

’

load status low from RO

uart and all the other shit

res_uart
UARTC

UARTC

uart_conf
UARTC

hi (bootmsqg)
MsgHi
lo (bootmsq)
MsgLo

WriteMsg

; main prompt loop

prompt :
lodi, RO

T

’

master reset to the uart

master reset to the uart

configure the uart for 9600 baud 8 bits no parity 1 stop

save address of message

write the boot message

the prompt

33

command:

no_help:

bsta, UN

; let’s
bsta, UN

; print
lodi, RO
stra, RO
lodi, RO
stra, RO
bsta, UN

lodi,R1
bsta, UN
iorz RO
bctr,EQ

; if we
addi,R1
stra,R1l
comi, RO

bctr, LT
subi, RO

; time to interpret

comi, RO
bcfr, EQ

WriteCh

’

write it

wait util we get something from the KB

GetStr

a CR/LF
hi(m_crlf)
MsgHi
lo(m_crlf)
MsgLo
WriteMsg

0
SkipWhite

prompt

are here RO
; now this is a bit

1
R1_save

rar
command
32

IHI
no_help

; yes it’s help

lodi,RO
stra, RO
lodi, RO
stra, RO
bsta, UN
bcta, UN

comi, RO
bcfr, EQ
bcfa, EQ

; is dump,

loda, R1
bsta, UN
bctr, EQ
iorz RO
bcta, EQ

; let’s
bsta, UN
stra, RO
stra, RO
bsta, UN
stra, RO
stra, RO

hi(m_help)
MsgHi
lo(m_help)
MsgLo
WriteMsg
prompt

IDI
no_dump
no_dump

R1_save
SkipWhite
prompt

prompt

’

write CR/LF

start at the beginning of the string
skip the white spaces and get something in RO

if it’s an EQ we have an empty string

is the first not null char we may have something to do
brutal but

because for further things we want to be PAST this char
let’s save Rl as index to the first non-white

is it >= ’a’
no, fine as it is
yes, make it uppercase then 'A’ .. 'Z’

what we have

’

’

’

’

’

’

get a 16 bits

Get8Hex
MemHi
X_CurAdrHi
Get 8Hex
MemLo
X_CurAdrLo

’

is it 'help’ 7
no it,s not

write the help info
go back to prompt

is dump ?
no it,s not
no it,s not

let’s get two numbers
; This is DUMP <aaaa>

want that index back
skip the white spaces and get something in RO
if it’s an EQ we have an empty string

if it’s an EQ we have an empty string

number
first HIGH digit in RO

a copy in here too
second LOW digit in RO

idem

34

1_loop

b_loop

inc_hm

asc_1lp

sublp:

noincha

; time to dump all this

lodi,R1
stra,R1l

lodi,R1
stra,R1l

loda, RO
bsta, UN
loda, RO
bsta, UN
lodi, RO
bsta, UN
bsta, UN

loda, RO
bsta, UN
lodi, RO
bsta, UN

lodi, RO
lodi,R1
adda,R1
bctr, EQ
lodi, RO
stra,R1l
adda, RO
stra, RO

loda, RO
subi, RO
stra, RO
becfr, EQ

16
Cntl

16
Cnt2

MemHi
Write8Hex
MemLo
Write8Hex
’ ’
WriteCh
WriteCh

*MemH 1
Write8Hex

o

WriteCh

1

1
MemLo
inc_hm
0
MemLo
MemHi
MemHi

Cnt2

1

Cnt2
b_loop

’

16 lines counter

16 bytes at time

write the high address byte
write the low address byte

write a couple
of spaces

RO = * (AdrHi-AdrLo)
write the byte at that mem loc

write a space

assume 1 for MemHI

1 for MemLo in ANY case

Rl = 1 + * (MemLo)

if 0 means Hi has to be incremented too
else leave MemHi untouched

save again MemLo

RO = 1/0 + * (MemHi)

decrement the row counter

go in loop if not zero

; 1 line of 16 bytes been dumped

; new stuff,

lodi, RO
bsta, UN
bsta, UN

lodi,R1
stra,R1

loda, r0
comi, RO
bctr, LT
comi, RO
bectr,GT
bsta, UN

loda, RO
addi, RO
stra, RO
bcfr,EQ
loda, RO
addi, RO
stra, RO

loda, RO
subi, RO

ror

WriteCh
WriteCh

16
Cnt2

*X_CurAdrHi
32

no_asc

127

no_asc
WriteCh

X_CurAdrLo
1
X_CurAdrLo
noincha
X_CurAdrHi
1
X_CurAdrHi

Cnt2
1

’

the ASCII dump

write a space
write another space

16 bytes again at time

is something between space and 127 ?

is < 32, ignore it

is > 127, ignore it
write the char

decrement the ascii bytes counter

35

no_asc

dolf

no_dump:

a_loop:

stra, RO
bcfr, EQ
bsta, UN

lodi, RO
bsta, UN
bctr, UN

; print
lodi,RO
stra, RO
lodi,RO
stra, RO
bsta, UN

loda, RO
subi, RO
stra, RO
befr, EQ
bcfa, EQ

bcta, UN

comi, RO
bcfr, EQ
bcfa, EQ

; is alter,

loda,R1
bsta, UN
bctr, EQ
bcta, EQ

; let’s
bsta, UN
stra, RO
bsta, UN
stra, RO

loda, RO
bsta, UN
loda, RO
bsta, UN
lodi, RO
bsta, UN
bsta, UN

loda, RO
bsta, UN
lodi, RO
bsta, UN
lodi, RO
bsta, UN
lodi,RO
bsta, UN

; let’s
bsta, UN

Cnt2
asc_lp
dolf

I'I
WriteCh
sublp

a CR/LF
hi(m_crlf)
MsgHi
lo(m_crlf)
MsgLo
WriteMsg

Cntl

1

Cntl
1_loop
1_loop

prompt

IAI
no_alter
no_alter

R1_save
SkipWhite
prompt
prompt

let’s get

’

get a 16 bits

Get8Hex
MemHi
Get8Hex
MemLo

MemHi
Write8Hex
MemLo
Write8Hex
4 4
WriteCh
WriteCh

*MemH 1
Write8Hex
ror
WriteCh
1o
WriteCh

ror

WriteCh

’

’

’

go in loop if not zero
finally go next line

write a dot
and go in loop again

write CR/LF

decrement the line counter
go in loop if not zero

go in loop if not zero

end of dump

is it ’alter’ 2
; no it,s not
; no it,s not
two numbers
want that index back
skip the white spaces and get something in RO
if it’s an EQ we have an empty string

if it’s an EQ we have an empty string

number
first HIGH digit in RO

second LOW digit in RO

write the high address byte
write the low address byte

write a couple
of spaces

RO = * (AdrHi-AdrLo)
write the byte at that mem loc

write a space
write a question mark

write a space

wait util we get something from the KB

GetStr

36

; print a CR/LF
lodi,R0O hi(m_crlf)
stra,R0O MsgHi

lodi,R0O lo(m_crlf)
stra,R0 MsglLo ;

bsta,UN WriteMsg ; write CR/LF
lodi,R1 O ; start at the beginning of the string
bsta,UN SkipWhite ; skip the white spaces and get something in RO
bctr,EQ a_loop ; if it’s an EQ we have an empty string
comi,RO 7.’
; bctr,EQ prompt ; if it’s a .’ end here
bcta,EQ prompt ; if it’s a .’ end here
; it’s not a ’.’ we assume is a valid digit
bsta,UN Get8Hex ; get digit in RO
stra, R0 *MemHi ; write it into memory
lodi,R0O 1 ; assume 1 for MemHI
lodi,R1 1 ; 1 for MemLo in ANY case
adda,R1 MemLo ; RL = 1 + % (MemLo)
bctr,EQ inc_hm2 ; if 0 means Hi has to be incremented too
lodi, RO O ; else leave MemHi untouched
inc_hm2 stra,R1 MemLo ; save again MemLo
adda, RO MemHi ; RO = 1/0 + *x(MemHi)

stra, RO MemHi

; bctr,UN a_loop ; continue until 7.’/
bcta,UN a_loop ; continue until ' .’
no_alter:
comi,RO "L’ ; is it ’load’ 2
bcfa,EQ no_load ; no it,s not

lodi,R0 11h ;
stra,RO X_AdrHi
lodi, RO 00h

stra,R0 X_AdrLo ; assume 1100h as default load address

loda,R1 R1l_save ; want that index back

bsta,UN SkipWhite ; skip the white spaces and get something in RO
bctr,EQ go_xmo ; if it’s an EQ we have an empty string

; let’s get a 16 bits number

bsta,UN Get8Hex ; first HIGH digit in RO
stra,R0 X_AdrHi
bsta,UN Get8Hex ; second LOW digit in RO

stra,R0 X_AdrLo

go_xmo: bcta,UN Do_Xmdm ; go, do the XMODEM protocol
bcta,UN prompt ; safety
no_load:
comi,RO ’J’ ; is it " jump’ ?
bcfa,EQ no_jump ; no it,s not
loda,R1 R1_save ; want that index back
bsta,UN SkipWhite ; skip the white spaces and get something in RO
bcta,EQ prompt ; if empty, no jump

; let’s get a 16 bits number

37

bsta,UN Get8Hex ; first HIGH digit in RO
stra,R0O MemHi

bsta,UN Get8Hex ; second LOW digit in RO

stra,R0O MemLo

bcta, UN xMemHi ; »*xJUMP ! %% Ta ta ta ta tata ta
no_jump:
end_cmd:

; all unrecognized commands end up here

bcta, UN prompt

; Skips the white spaces in a string starting at index = Rl

; returns R1 to the first non-white char or NULL
SkipWhite:

subi,R1 1 ; ——R1 cause the ++ immediately after this
skp_lp 1loda,R0 StrBuf,Rl1+ ; get the char in RO

retc, EQ ; if we met a NULL we can end here

comi,RO " / ; is it a space ?

bctr,EQ skp_1lp ; yes, move on

retc, UN ; no, we found something

; Gets a string into StrBuf, no longer than MAX_CHARS
GetStr lodi,R2 0ffh ; —1 cause the ++, this is our pointer
k_loop rede,R1l UARTS ; let’s check the UART status

andi,R1 RDRF ; any char in the RX buffer ?

bctr,EQ k_loop ; if not just wait again

; we have some char

rede, RO UARTRX

comi,R0O cr ; is a carriage return ?
; bctr,EQ endstr ; yes we have something

bcta,EQ endstr ; yves we have something

comi,RO 1f ; is a line feed ?
; bctr,EQ endstr ; yes we have something

bcta,EQ endstr ; yes we have something

comi, RO bksp

bctr,EQ backspace ; go handle the backspace

comi,R0O del ; if it’s a DEL (127) char

bctr,EQ backspace ; go handle the backspace

comi,R0O 32 ; is something between space and 127 ?

bctr,LT k_loop ; is < 32, ignore it

comi,R0O 127

bctr,GT k_loop ; is > 127, ignore it

; the char is good, can we put it in ?

comi,R2 16

bctr,EQ errbell ; no, we are already full

stra,R0 StrBuf,R2+ ; ++R2 and save it into the buffer

stra,R0 RO_save

lodi, RO O

stra,R0O StrBuf,R2+ ; ++R2 and add a null

subi,R2 1 ; dec R2 so it’s ready for the next char

; finally echo the char

loda, R0 RO_save
echo_ch bsta,UN WriteCh ; write it

bctr,UN k_loop ; get a new char

38

backspace:
comi, R2
bctr, EQ
lodi,RO
stra, RO
subi, R2
lodi, RO
bsta, UN
lodi, RO
bsta, UN
lodi,RO
bsta, UN

; bctr, UN
bcta, UN

; sound
errbell:

lodi,RO

bctr, UN

0ffh ;
errbell ;
0

StrBuf, R2 ;
1 i
bksp

WriteCh ;
4 4

WriteCh ;
bksp

WriteCh ;
k_loop ;
k_loop ;

are we at the first char ?
if so, bell

put a 0 at the current position
R2--, go back 1 char

write backspace
write space over it
write backspace

go to get more chars
go to get more chars

the bell if something is wrong

bell ;
echo_ch ;

put the bell char in
sound it and go back in loop

; we still have to add a NULL, in case one Jjust presses enter

endstr lodi,RO
stra, RO
retc, UN

; Writes a message
; absolute 15 bits

0
StrBuf,R2+ ;

’

WriteMsg stra,R0O RO_save ;
stra,R1 R1l_save ;

msg_lp loda,RO
bctr, EQ

w_loop rede,R1
andi,R1
bctr,EQ

; now we can transmit

wrte, RO

; let’s
lodi, RO
lodi,R1
adda,R1
bctr, EQ
lodi,RO
inc_h stra,R1l
adda, RO
stra, RO

betr, UN

; end of transmission,

endmsg loda, RO
loda,R1
retc, UN

*MsgHi1 ;
endmsg ;

UARTS ;

TDRE ;
w_loop ;

UARTTX ;

++R2 and add a null
unconditional return

NULL (0) terminated where
address is in (MsgHi - MsgLo)

save RO
save R1

RO = * (AdrHi-AdrLo)
if 0 end of string

let be sure we can transmit first
check the transmitter empty bit
if zero, wait until it gets ’1’

the byte

send the character

increment address now

1 i
1 i
MsgLo H
inc_h ;
0 i
MsgLo ;
MsgHi ;
MsgHi

msg_lp ;

RO_save
R1l_save

’

assume 1 for AdrHI

1 for AdrLo in ANY case

Rl = 1 + x(MsgLo)

if 0 means Hi has to be incremented too
else leave MsgHi untouched

save again MsgLo

RO = 1/0 + = (MsgHi)

continue with the message

restore and return

unconditional return

; Writes the char contained in RO

39

WriteCh stra,R0 RO_save

w_loop2 rede,R0O UARTS ; let be sure we can transmit first
andi, RO TDRE ; check the transmitter empty bit
bctr,EQ w_loop2 ; if zero, wait until it gets ’1’

; now we can transmit the byte
loda,R0 RO_save ; get it back
wrte, RO UARTTX ; send the character

loda,R0O RO_save
retc, UN ; unconditional return

; get 8 bits value from hex
; Rl = index to string buffer
; RO = exit result

Get8Hex:
subi,R1 1 ; -1 for index cause ++ now
loda,R0 StrBuf,Rl1+ ; get the char in R2
retc,EQ ; if zero end
subi,R0O "0’ ; we do it a bit simpler way
comi,R0O 10
bctr, LT diglok ; 1if < 10 we are ok
subi,R0O 7 ; adjust for "A"-"F"
comi,R0O 16
bctr,LT diglok ; if < 16 we are ok
subi,R0 32 ; adjust for "a"-"f"
diglok rrl,RO
rrl,RO
rrl,RO
rrl,RO ; put the high nibble where it should be
stra,R0 R2_Save
; same story for the second digit
loda,R0O StrBuf,R1+ ; get the char in RO
retc, EQ ; if zero end
subi,RO "0’ ; we do it a bit simpler way
comi,R0O 10
bctr,LT dig2ok ; if < 10 we are ok
subi,R0 7 ; adjust for "A"-"F"
comi,R0O 16
bctr, LT dig2ok ; 1f < 16 we are ok
subi, R0 32 ; adjust for "a"-"f"
dig2o0k iora,RO R2_Save ; low nibble in RO
addi,R1 1 ; make it point to the char after this
retc, UN ; unconditional return
; Writes the 8 hex digit in RO
Write8Hex:

stra,R0 R1l_save
loda,R2 R1_save

rrr,RO

rrr,RO

rrr, RO

rrr,RO

andi, RO OfH ; get the high nibble and mask it
addi,RO 70’ ; sum this

comi, RO 58 ; is the result < 58 ?

bctr, LT diglgd ; if yes we are ok

addi,R0 7 ; otherwise we need 7 more to be "A" "EF"

40

diglgd Dbsta,UN

; lower
loda, RO
andi, RO
addi, RO
comi, RO
bctr, LT
addi, RO
dig2gd Dbsta,UN
retc, UN

WriteCh ; write the high nibble

nibble, same story

R1l_save
OfH ; get the low nibble and mask it
ro’r ; sum this
58 ; is the result < 58 ?
dig2gd ; 1f yes we are ok
7 ; otherwise we need 7 more to be "A" "EF"
WriteCh ; write the low nibble
; unconditional return

; A subroutine to increment a 16 bits pointer

IncrPtr lodi,RO
AddPtr adda,RO
stra, RO
bctr,EQ
retc, UN
pt_inch lodi,RO
adda, RO
stra, RO
retc, UN

; lodi, RO
; adda, RO
; stra, r0
; bcfr,EQ
; lodi, RO
; adda, r0
; stra, r0
;donel:

1

*PtrLo ; RO = RO + % (PtrHi)

*PtrLo ; save back LO + RO

pt_inch ; we have an overflow of the "Lo" we can increment "Hi" too
; unconditional return

1

*PtrHi

*PtrHi
; unconditional return

xxxL
xxxL
donel

xxxH
xxxH

; Xmodem Loader

; phase
; phase
; phase

Do_Xmdm:

lodi,RO
stra, RO
stra, RO
stra, RO
lodi, RO
stra, RO
lodi,RO
stra, RO
lodi,RO
stra, RO

; let’s
tim_check:
loda, RO
subi, RO
stra, RO
comi, RO
bcefr, EQ
loda, RO
subi, RO

0, packet still to begin, wait for SOH or STX and/or CAN
1, stx/soh got, getting pktnum, 255-pktnum
2, got those above now just getting datat+crc while computing CRC

; assuming somewhere the load address been put into AdrHi,AdrLo

0

X_Phase ; phase O

X_OnekK ; assume we are going for 128 bytes
X_TimeCntH ; timeout counter, force a timeout
1

X_TimeCntL

0ffh

X_LastPk ; last packet number = 0Oxff

2

X_CanCnt ; CAN counter

check the timeout counter

X_TimeCntL

1

X_TimeCntL ; X_TimeCntl--

0ffh

nosubh ; if not negative go on
X_TimeCntH ; otherwise

1 ; subtract 1

41

nosubh

timeout

trash

end_tr

stra,RO X_TimeCntH ; from the HI part too and save it

loda, R0 X_TimeCntH
iora,R0O X_TimeCntL
bcfr,EQ no_timeout ; if H OR L != 0 NO timeout

; we have a timeout
lodi,R0O O

stra,R0 X_Phase ; we restart from phase 0
stra,R0 X_Crc

rede,R1 UARTS ; let’s check the UART status
andi,R1 RDRF ; any char in the RX buffer ?
bctr,EQ end_tr ; if not stop thrashing
rede, RO UARTRX ; read and thrash chars

nop

nop

nop ; waste a bit of time

bctr,UN trash ; continue to trash

lodi, RO CHAR_NAK
bsta,UN WriteCh ; send a NAK

lodi, R0 Offh ; restore timeout counter
stra,R0 X_TimeCntL
stra,R0 X_TimeCntH

bsta,UN XM_ResetPtr ; reset pointers and fall back here

no_timeout:

rede, R1 UARTS ; let’s check the UART status
andi, R1 RDRF ; any char in the RX buffer ?
bcta,EQ tim_check ; i1f not continue to check for timeout

; here we got some char from the serial port

char_got:

lodi,R0 0ffh
stra,R0 X_TimeCntL
stra,R0 X_TimeCntH ; reset the timeout counter to MAX

; now we process the char depending on the phase

loda,R0 X_Phase
bcfa,EQ x_phasel ; if it’s not 0, could be phasel

x_phaseO:

; here we are in phase 0, waiting for SOH or STX

rede, RO UARTRX ; get what we got
comi, RO CHAR_CAN ; is it a CAN character maybe ?
bctr,EQ is_can ; if yes go to process it

; 1it’s not a CAN could be STX or SOH

comi, RO CHAR_SOH ; is it a SOH ?

bctf,EQ maybe_stx ; no, maybe it’s an STX then
bctr,EQ is_soh ; yes go there

comi, RO CHAR_STX ; is it an STX maybe ?

42

bcfr,EQ maybe_eot ; no, could be an EOT then

; here is an STX, it means there are 1024 bytes of data
lodi,R0O 04h
stra,R0O X_ByteCntH

lodi,R0O O
stra,RO X_ByteCntL ; set for 1024 bytes (400h)
bctr,UN go_one ; and go in phase 1

maybe_eot:
comi, RO CHAR_EOT ; is an EOT char ?
bcta,EQ end_xloader ; if yes, end of the file transfer

trashl: bcta,UN trash ; unrecognized shit, thrash all and send NAK

; 1t’s a SOH, let’s reset pointers, counters and CRC

is_soh:
bsta,UN XM_ResetPtr ; reset pointers
go_one:
lodi,R0O 1
stra,R0 X_Phase ; phase = 1 now
lodi,R1 2 ; two bytes in here (pkt num and 255-pktnum) we have to get
stra,R1 X_CntTwo
bcta,UN no_timeout ; continue to read chars
is_can: loda,R0 X_CanCnt ; we got a CAN, let’ see how many
subi,R0O 1 ; CAN counter-—--—
stra,R0 X_CanCnt
bcfa,EQ no_timeout ; if it’s not zero, let’s read more
x_abort rede,R1 UARTS ; let’s check the UART status
andi, R1 RDRF ; any char in the RX buffer ?
bctr,EQ end_tr2 ; 1f not stop thrashing
rede, RO UARTRX ; read and thrash chars
nop
nop
nop ; waste a bit of time
bctr,UN x_abort ; continue to trash

end_tr2 lodi,RO hi (abortmsg)
stra,R0O MsgHi
lodi,R0O lo (abortmsg)

stra,R0O MsgLo ; save address of message

bsta,UN WriteMsg ; write the abort message

bcta,UN prompt ; go back to prompt, exit xmodem loader
x_phasel:

comi,RO 1

bcfr,EQ x_phase2 ; if it’s not 1, could be 2

; here in phase 1 we have to get : 2 bytes (pktnum and 255-pktnum)
; , <data> , <crc>

loda,R0 X_CntTwo

subi,R0O 1

stra,R0 X_CntTwo

bctr,EQ got_num ; we got both bytes

rede, RO UARTRX ; get what we got

stra,R0 X_CurPknum ; save it temporary here (i.e. packet[0], it will
; get overwritten)

43

bcta,UN no_timeout ; go in loop getting more bytes

got_num rede, RO UARTRX ; get what we got (i.e. 255-pktnum)
eora,R0 X_CurPknum ; pkt_num ~ (255-pktnum)
comi,R0O O0ffh ; if they are correct the result has to be Oxff
bcfa,EQ trashl ; if it’s not 255 something is corrupted/wrong
go_two lodi,RO 2 ; we can go in phase 2 now
stra,R0 X_Phase
bcta,UN no_timeout ; go in loop getting more bytes

; phase 2, we are getting bytes now and computing the CRC

X_phase?2:
loda,R0 X_ByteCntH ; is hi counter 0
bcfr,EQ no_crc ; no, can’t be the CRC
loda,R0 X_ByteCntL

; is HI = LO == 0 ?

; comi,RO 1 ; is HI == 0 and LO == 1 ?
bcfr,EQ no_crc ; no, can’t be the CRC

; is the CRC !

rede, Rl UARTRX ; get what we got

loda,R0 X_Crc ; get the computed CRC

comz R1 ; check if they match

bcfa,EQ trash ; if they don’t trash everyting (and send NAK)
pkt_good:

; here the packet is good and the CRC too, we can advance pointers
; if and only if the packet number is NOT the same of before

loda, RO X_CurPkNum
coma, RO X_LastPk
bctr,EQ no_updateptr ; if the numbers are the same don’t update the PTRs

stra,R0 X_LastPk ; make LastPk = CurPkNum
loda,R0 X_CurAdrHi
stra,R0 X_AdrHi

loda, R0 X_CurAdrLo
stra,R0 X_AdrLo ; advance pointers

no_updateptr:

lodi,R0O O
stra,R0 X_Phase ; restart from phase 0
stra,R0 X_Crc ; reset CRC

bsta,UN XM_ResetPtr ; put counters and stuff back

lodi,R0O CHAR_ACK
bsta,UN WriteCh ; send a ACK

bcta,UN no_timeout ; go in loop getting chars

no_crc: ; we are reading/saving bytes and computing the CRC on them then

rede, RO UARTRX ; get what we got
stra, RO *X_CurAdrHi ; save the byte
adda,R0 X_Crc ; compute the CRC
stra,R0 X_Crc ; and update it

44

; time to increment the pointer
loda, R0 X_CurAdrLo

addi,R0O 1 ; increment the low part

stra,R0 X_CurAdrLo ; and save it

bcfr,EQ no_inchi ; 1if <> 0 no need to increment hi
loda,R0 X_CurAdrHi

addi,R0O 1 ; increment the high part

stra,R0O X_CurAdrHi
no_inchi:
; we need to decrement the bytes counter
loda,R0 X_ByteCntL
subi, R0 1
stra,R0O X_ByteCntL ;
comi,R0O O0ffh

bcfr,EQ nosubh2 ; i1f not negative go on

loda,R0O X_ByteCntH ; otherwise

subi,R0 1 ; subtract 1

stra,RO X_ByteCntH ; from the HI part too and save it

nosubh2:

; this should never be 0, if it gets 0 here there’s something weird
bcta,UN no_timeout ; go in loop getting chars

; end of all xloader, in a good way
end_xloader:

lodi, RO CHAR_ACK
bsta,UN WriteCh ; send a ACK

; waste a bit of time and trash everything that comes

lodi,R0 020h
waste lodi,R1 0ffh
wastel nop
nop
nop
nop
no_rd subi,R1 1
bcecfr,EQ wastel ; waste a bit of time
subi,R0O 1
bcfr,EQ waste

lodi, RO hi (loadok)
stra,R0O MsgHi
lodi, RO lo(loadok)

stra,R0 MsgLo ; save address of message
bsta,UN WriteMsg ; write the boot message
bcta,UN prompt ; end go back to prompt

; Mini routine, resets PTRs and counters

; let’s rememebr a packet is <soh/stx><blk><255-blk><data>[128 or 1024]<crc>
; <crc> = sum all data ONLY

XM_ResetPtr:

lodi,R0O O

stra,R0 X_Crc ; reset CRC

stra,R0O X_ByteCntL

stra,R0 X_ByteCntH ; high bytes counter as well

45

loda, RO X_OneK

bctr,EQ is_128 ; we are using 128 bytes
lodi, RO 04h
stra, RO X_ByteCntH ; otherwise is 400h, 1K bytes
bctr,UN set_ptr ; go on with the rest
is_128 1lodi,R0O 128 ; otherwise just set the low counter to 128
stra,RO X_ByteCntL ; low bytes counter too

set_ptr loda,R0 X_AdrHi
stra,R0 X_CurAdrHi
loda, R0 X_AdrLo
stra,R0 X_CurAdrLo ; X_CurAdr = X_Adr
retc, UN ; unconditional return

; The various messages

bootmsg db
db
db
db
db
db
m_crlf db
db
m_help db
db
db
db
db
db
abortmsg:
db
db
loadok db
db
db

cr,lf

"Signetics_,2650_CPU_Board @I1Mhz"

cr,lf

"(C)_2012 Ivan_Z._Llamasoft"

cr,1f

"BootLoader Version 5.02"

cr,1f

0

"H_shows_help, D _<aaaa>_dumps_memory", cr, 1f
"A _<aaaa>_alters _memory, (.’ .’ _to_exit)",cr,1lf
"L_<aaaa>_ XMODEM 1loads, data, X _CAN",cr,1f
"J_<aaaa>_jumps_to_address",cr,1lf
"<aaaa>_hexadecimal_16_bits_address",cr,1lf

0

"Transfer_aborted.",cr,1f
0

cr,1f,"Data_loaded OK",cr,1lf
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

8 Card pictures

Here pictures of the completed card showing jumpers locations.

46

Figure 9: The board components side

47

Figure 10: The board solder side, note the corrections done with wire

I ——— ¥ T

48

9 Disclaimer and License

This project been done entierely as an hobby with absolutely NO COMMERCIAL
APPLICATION OR INTENT whatsoever , there is absolutely NO INTENT of making
any money out of it. This project also been developed during my little free time as a
work of passion and love for retrocomputing and old hardware, it’s been made at best
but don’t expect it to be perfect or faults free.

I assume NO responsibility of any sort for damages and / or any improper use of
this documentation, feel free to browse it and have fun and interest as much as I do but
please accept it as-it-is. My hope is all this can be inspirational to others to continue
the study and presevation of interesting technology.

For the sake of clarity I declare this work to be under the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) check the Creative Com-
mons website (http://creativecommons.org) if you need details about what this means.

@05

49

